

RECAP

MY NAME IS……….

I REMEMBER………

Saying…

Half of life is lost in charming others. The

other half is lost in going through anxieties

caused by others. Leave this play, you have

played enough!

- Rumi

Objective of

Today’s Lecture

Transaction Management

Transaction

Recovery

Concurrency

Transaction

A transaction is an action, or a series of actions,

carried out by a single user or an application

program, which reads or updates the contents of a

database.

Transaction

A transaction is a

‘logical unit of work’

on a database

Each transaction does

something in the

database

No part of it alone

achieves anything of use

or interest

Transactions are the
unit of recovery,
consistency, and
integrity as well

ACID properties

Atomicity

Consistency

Isolation

Durability

Atomicity and Consistency

Atomicity

Transactions are
atomic – they don’t
have parts
(conceptually)

Can’t be executed
partially; it should not
be detectable that they
interleave with another
transaction

Consistency

Transactions take the

database from one

consistent state into

another

In the middle of a

transaction the database

might not be consistent

Isolation and Durability

Isolation

The effects of a
transaction are not
visible to other
transactions until it has
completed

From outside the
transaction has either
happened or not

To me this actually
sounds like a
consequence of
atomicity…

Durability

Once a transaction has
completed, its changes
are made permanent

Even if the system
crashes, the effects of a
transaction must remain
in place

Example of Transaction

Transfer £50 from account

A to account B

Read(A)

A = A - 50

Write(A)

Read(B)

B = B+50

Write(B)

Atomicity - shouldn’t take

money from A without giving

it to B

Consistency - money isn’t lost

or gained

Isolation - other queries

shouldn’t see A or B change

until completion

Durability - the money does

not go back to A

The Transaction Manager

The transaction

manager enforces the

ACID properties

It schedules the

operations of

transactions

COMMIT and

ROLLBACK are used to

ensure atomicity

Locks or timestamps

are used to ensure

consistency and

isolation for concurrent

transactions

A log is kept to ensure

durability in the event of

system failure

COMMIT and ROLLBACK

COMMIT signals the

successful end of a

transaction

Any changes made by

the transaction should

be saved

These changes are now

visible to other

transactions

ROLLBACK signals

the unsuccessful end

of a transaction

Any changes made by

the transaction should

be undone

It is now as if the

transaction never

existed

Recovery

Transactions should
be durable, but we
cannot prevent all
sorts of failures:

System crashes

Power failures

Disk crashes

User mistakes

Sabotage

Natural disasters

Prevention is better

than cure

Reliable OS

Security

UPS and surge

protectors

Can’t protect against

everything though

The Transaction Log

The transaction log

records the details of

all transactions

Any changes the

transaction makes to the

database

How to undo these

changes

When transactions

complete and how

The log is stored on

disk, not in memory

If the system crashes it

is preserved

Write ahead log rule

The entry in the log

must be made before

COMMIT processing

can complete

The Transaction Log File –

Example

<T, starts>

<T, X, 55>

<T, Y, 30>

<T, commit>

Read (X)

X = X + 55

Write (X)

Y = Y * 30

Write (Y)

Commit

Supposing

X = 50

Y = 10

System Failures

A system failure

means all running

transactions are

affected

Software crashes

Power failures

The physical media

(disks) are not

damaged

At various times a

DBMS takes a

checkpoint

All committed

transactions are written

to disk

A record is made (on

disk) of the

transactions that are

currently running

Types of Transactions

Last Checkpoint System Failure

T1

T2

T3

T4

T5

System Recovery

Any transaction that

was running at the

time of failure needs

to be undone and

restarted

Any transactions that

committed since the

last checkpoint need

to be redone

Transactions of type

T1 need no recovery

Transactions of type

T3 or T5 need to be

undone and restarted

Transactions of type

T2 or T4 need to be

redone

Forwards and Backwards

Backwards recovery

We need to undo some

transactions

Working backwards

through the log we undo

any operation by a

transaction on the

UNDO list

This returns the

database to a

consistent state

Forwards recovery

Some transactions need

to be redone

Working forwards

through the log we redo

any operation by a

transaction on the

REDO list

This brings the

database up to date

Media Failures

System failures are

not too severe

Only information since

the last checkpoint is

affected

This can be recovered

from the transaction log

Media failures (disk

crashes etc) are more

serious

The data stored to disk

is damaged

The transaction log

itself may be damaged

Backups

Backups are needed

to recover from media

failure

The transaction log and

entire contents of the

database is written to

secondary storage

(often tape)

Time consuming, and

often requires down

time

Backups frequency

Frequent enough that

little information is lost

Not so frequent as to

cause problems

Every day (night) is

common

Backup storage

Recovery – Media Failure

Restore the database

from the last backup

Use the transaction

log to redo any

changes made since

the last backup

If the transaction log

is damaged you can’t

do step 2

Store the log on a

separate physical

device to the database

The risk of losing both

is then reduced

Concurrency

Large databases are

used by many people

Many transactions to be

run on the database

It is desirable to let them

run at the same time as

each other

Need to preserve

isolation

If we don’t allow for

concurrency then

transactions are run

sequentially

Have a queue of

transactions

Long transactions (eg

backups) will make

others wait for long

periods

Concurrency Problems

In order to run

transactions

concurrently we

interleave their

operations

Each transaction gets

a share of the

computing time

This leads to several

sorts of problems

Lost updates

Uncommitted updates

Incorrect analysis

All arise because

isolation is broken

Lost Update

T1 and T2 read X,

both modify it, then

both write it out

The net effect of T1 and

T2 should be no change

on X

Only T2’s change is

seen, however, so the

final value of X has

increased by 5

T1 T2

Read(X)

X = X - 5

Read(X)

X = X + 5

Write(X)

Write(X)

COMMIT

COMMIT

TIME TA TB BAL

t1
Read (BAL) 1000

t2
……. Read (BAL) 1000

t3
BAL = BAL - 50 …….. 1000

t4
Write (BAL) 950

t5
……. BAL = BAL + 10 950

t6
…….. Write (BAL) 1010

Lost Update

Uncommitted Update

T2 sees the change to

X made by T1, but T1

is rolled back

The change made by T1

is undone on rollback

It should be as if that

change never happened

T1 T2

Read(X)

X = X - 5

Write(X)

Read(X)

X = X + 5

Write(X)

ROLLBACK

COMMIT

Inconsistent Analysis

T1 doesn’t change the

sum of X and Y, but T2

sees a change

T1 consists of two parts

– take 5 from X and then

add 5 to Y

T2 sees the effect of the

first, but not the second

T1 T2

Read(X)

X = X - 5

Write(X)

Read(X)

Read(Y)

Sum = X+Y

Read(Y)

Y = Y + 5

Write(Y)

CHHUTTI

AND THAT IS

FAREWELL TO

DAY 21- 22 ☺

